The characteristic equation for partial differential equations of the first order
نویسندگان
چکیده
منابع مشابه
First Order Partial Differential Equations
If T⃗ denotes a vector tangent to C at t,x,u then the direction numbers of T⃗ must be a,b, f. But then (1.2) implies that T⃗ n⃗, which is to say, T⃗ lies in the tangent plane to the surface S. But if T⃗ lies in the tangent plane, then C must lie in S. Evidently, solution curves of (1.2) lie in the solution surface S associated with (1.2). Such curves are called characteristic curves for (1.2). W...
متن کاملFirst order partial differential equations∗
2 Separation of variables and the complete integral 5 2.1 Separation of variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.2 The envelope of a family of curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.3 The complete integral . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.4 Determining the characteristic strips from t...
متن کاملFractal first order partial differential equations
The present paper is concerned with semilinear partial differential equations involving a particular pseudo-differential operator. It investigates both fractal conservation laws and non-local HamiltonJacobi equations. The idea is to combine an integral representation of the operator and Duhamel’s formula to prove, on the one side, the key a priori estimates for the scalar conservation law and t...
متن کاملA new approach for solving the first-order linear matrix differential equations
Abstract. The main contribution of the current paper is to propose a new effective numerical method for solving the first-order linear matrix differential equations. Properties of the Legendre basis operational matrix of integration together with a collocation method are applied to reduce the problem to a coupled linear matrix equations. Afterwards, an iterative algorithm is examined for solvin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Colloquium Mathematicum
سال: 1958
ISSN: 0010-1354,1730-6302
DOI: 10.4064/cm-6-1-223-226